Part Number Hot Search : 
SPX2733T FX102KQE LT1724IS HIN211CA VALDHA EA61FC2 TSOP1733 01010
Product Description
Full Text Search
 

To Download IRF3805L-7P Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  
 
 hexfet ? power mosfet v dss = 55v r ds(on) = 2.6m ?  i d = 160a hexfet ? is a registered trademark of international rectifier. description this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely lowon-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g features  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  lead-free  
   absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (see fig. 9) i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested) single pulse avalanche energy tested value  i ar avalanche current a e ar repetitive avalanche energy  mj t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case  CCC 0.50 c/w r cs case-to-sink, flat, greased surface 0.50 CCC r ja junction-to-ambient  CCC 62 r ja junction-to-ambient (pcb mount, steady state)  CCC 40 max. 240 170 1000 160 10 lbfin (1.1nm) 300 2.0 20 440 680 see fig.12a,12b,15,16 300 (1.6mm from case ) -55 to + 175      
      
   





 



!
 downloaded from: http:///

 




 



!
    repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).    limited by t jmax , starting t j = 25c, l=0.043mh, r g = 25 ? , i as = 140a, v gs =10v. part not recommended for use above this value.   pulse width 1.0ms; duty cycle 2%.   c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100%tested to this value in production.  this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint andsoldering techniques refer to application note #an-994.  r is measured at t j of approximately 90c. solder mounted on ims substrate. s d g s d g static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units v (br)dss drain-to-source breakdown volta g e5 5C C CC C Cv ? v dss / ? t j breakdown volta g e temp. coefficient CCC 0.05 CCC v/c r ds(on) smd static drain-to-source on-resistance CCC 2.0 2.6 m ? v gs(th) gate threshold volta g e2 . 0 C C C 4 . 0 v g fs forward transconductance 110 CCC CCC s i dss drain-to-source leaka g e current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leaka g e CCC CCC 200 na gate-to-source reverse leaka g e CCC CCC -200 q g total gate char g e CCC 130 200 nc q gs gate-to-source char g e CCC 53 CCC q gd gate-to-drain ("miller") char g e CCC 49 CCC t d(on) turn-on dela y time CCC23CCCns t r rise time CCC 130 CCC t d(off) turn-off dela y time CCC80CCC t f fall time CCC52CCC l d internal drain inductance CCC 4.5 CCC nh between lead, 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from packa g e and center of die contact c iss input capacitance CCC 7820 CCC pf c oss output capacitance CCC 1260 CCC c rss reverse transfer capacitance CCC 610 CCC c oss output capacitance CCC 4310 CCC c oss output capacitance CCC 980 CCC c oss eff. effective output capacitance CCC 1540 CCC diode characteristics parameter min. t y p. max. units i s continuous source current CCC CCC 240 (body diode) a i sm pulsed source current CCC CCC 1000 (body diode)  v sd diode forward voltage CCC CCC 1.3 v t rr reverse recovery time C C C4 56 8n s q rr reverse recover y char g e CCC 35 53 nc v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 140a  t j = 25c, i f = 140a, v dd = 28v di/dt = 100a/ s  t j = 25c, i s = 140a, v gs = 0v  showing the integral reverse p-n junction diode. v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 10v  mosfet symbol v gs = 0v v ds = 25v v gs = 0v, v ds = 44v, ? = 1.0mhz conditions v gs = 0v, v ds = 0v to 44v ? = 1.0mhz, see fig. 5 r g = 2.4 ? i d = 140a v ds = 25v, i d = 140a v dd = 28v i d = 140a v gs = 20v v gs = -20v v ds = 44v v gs = 10v  downloaded from: http:///

 




 



!
  fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60s pulse width tj = 25c 4.5v 0.1 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 4 6 8 10 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 60s pulse width 0 20 40 60 80 100 120 i d ,drain-to-source current (a) 0 50 100 150 200 250 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380s pulse width downloaded from: http:///

 




 



!
 " fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 50 100 150 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 64v v ds = 40v i d = 140a 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 10000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 10msec 1msec operation in this area limited by r ds (on) 100sec dc downloaded from: http:///

 




 



!
 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 i d , d r a i n c u r r e n t ( a ) limited by package -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 140a v gs = 10v 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.0794 0.0001920.1474 0.000628 0.2737 0.014012 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri downloaded from: http:///

 




 



!
 # q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - 
$ fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 500 1000 1500 2000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 21a 37a bottom 140a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a i d = 1.0ma i d = 1.0a downloaded from: http:///

 




 



!
 % fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 140a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) downloaded from: http:///

 




 



!
 & fig 17. '

()
(*
+
,
for n-channel hexfet 
power mosfets 
 
  ?  
 
  ?   
  ?  

 
   
  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period -    
!"#"$%&'&(&'%&) - + - + + + - - -        ?      ? 
 !
"#"" ?       $
 %% ? "#""&#  
 v ds 90%10% v gs t d(on) t r t d(off) t f   '( 1 )  $
  0.1 %       *+**  + -   fig 18a. switching time test circuit fig 18b. switching time waveforms downloaded from: http:///

 




 



!
 . d 2 pak - 7 pin package outline dimensions are shown in millimeters (inches) ,"-&). * "#  /-"0"-'& 1/(!&2 '&#)" "! -3) 4#- 4(&)& )&& 3--4.55666*#!*%"054#" 2/%-!"5/-"5 * "# -3& 0")- %/##&- 2#6$ 4(&)& #&!&# -"  6&)-& - 3--4.55666*#!*%"054% $&5 downloaded from: http:///

 




 



!
   d 2 pak - 7 pin part marking information d 2 pak - 7 pin tape and reel ,"-&). * "#  /-"0"-'& 1/(!&2 '&#)" "! -3) 4#- 4(&)& )&& 3--4.55666*#!*%"054#" 2/%-!"5/-"5 * "# -3& 0")- %/##&- 2#6$ 4(&)& #&!&# -"  6&)-& - 3--4.55666*#!*%"054% $&5 downloaded from: http:///

 




 



!
  to-263ca 7 pin long leads package outlinedimensions are shown in millimeters (inches) ,"-&). * "#  /-"0"-'& 1/(!&2 '&#)" "! -3) 4#- 4(&)& )&& 3--4.55666*#!*%"054#" 2/%-!"5/-"5 * "# -3& 0")- %/##&- 2#6$ 4(&)& #&!&# -"  6&)-& - 3--4.55666*#!*%"054% $&5 ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ date comments 10/25/2013 ? remove the "automotive mosfet" on the header, on page 1. revision history downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF3805L-7P

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X